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Abstract: Multilevel converters continue their upward trend in renewable generation, electric vehi-
cles, and power quality conditioning applications. Despite having satisfactory voltage capabilities,
mainstream multilevel converters suffer from poor current sharing performances, thereby leading
to the development of lattice converters, i.e., a strong and versatile type of future multilevel power
converters. This article addresses two problems faced by lattice converters. First, we propose and
detail how to optimize the efficiency of a given lattice converter by controlling the on/off states of
H-bridge submodules. Second, we introduce the method that determines the voltage at each node of
the converter in order to satisfy output voltage and current requirements. Design and analysis of
lattice converters need a different mathematical toolbox than routinely exercised in power electronics.
By use of graph theory, this article provides control methods of 3 × 3 and 4 × 4 lattice converters,
satisfying various control objectives such as input/output terminals and output voltages. We further
validate the methods with simulation results. The methodologies, algorithms, and special cases
described in the article will aid further design and refinement of more efficient and easy-to-control
lattice converters.

Keywords: lattice converters; efficiency optimization; cascaded-bridge converters (CBCs); modular
multilevel converters (MMCs); switched-capacitor converters; topology

1. Introduction

Cascaded-bridge converters (CBCs) and modular multilevel converters (MMCs) are
being applied in an increasing number of fields due to their advantages such as mod-
ularity and scalability [1–3]. High voltage power transmission [3–6], renewable energy
generation [7–11], electric vehicles [12–18], power quality conditioning [19–21], transform-
ers [22–24], and power supplies [25–27] are some of the fields where multilevel converters
start to gain growing popularity. Modular multilevel converters and their variations are
particularly beneficial because of their high output quality, harmonic spectrum, adequate
dynamic response, low in su la tion and bearing stress due to more moderate voltage
transients dV/dt, failure tolerance, modularity in man u fac turing and replacement, reach
of practically any high voltage and power level with relatively low-voltage com po nents,
scalability, and lower switching losses [1,28–33].

In spite of the forenamed advantages, classic modular multi level converters are
limited in many aspects. They have weak current sharing capabilities [1,34], reduced
efficiency at lower voltages, and stricter voltage balancing requirements [34,35]. These
shortcomings motivate the introduction of parallel connectivity to MMCs [34–40]. Such
developments give rise to MMCs with serial and parallel connectivity (MMSPCs), which
enjoy both expanded current capabilities and the privilege of simple and even sensorless
voltage balancing algorithms [34,40–43].
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Although implementing parallel connectivity between neighboring submodules pro-
vide a number of benefits, MMSPCs are still limited since they are serial on the macro-level,
meaning that the overall modules cannot be paralleled. Therefore, lattice converters are
proposed to connect individual converter modules both in series and in parallel to form a
lattice grid [36,43]. Lattice converters have large (up to infinite) voltage/current conversion
capabilities, multiple input/output terminals that allow free connection to various circuits,
as well as simple modular expansion abilities. In summary, compared to traditional MMCs,
lattice converters have higher upper limits for volage and current capabilities, improved
modularity and scalability, and more versatility.

Figure 1a shows an example of the wiring diagram of a simple 3 × 3 latice converter,
with each submodule being an H-bridge converter powered with a DC voltage source.
Figure 1b shows the schematics of 3 × 3 and 4 × 4 grid lattice converter examples, where
the numbered points are denoted as nodes and the lines connecting nodes are edges, which,
in general, can be H-bridges, symmetrical half-bridges, asymmetrical half-bridges, or the
other submodules in [1]. In this article, all edges are considered H-bridges to offer the most
control freedom, since they can execute one of the four functions: raise the voltage, lower
the voltage, keep the voltage unchanged, or bypass the edge. Through the combination
of individual H-bridge controls (which will be explained in more detail in Section 2), the
lattice converter as a whole can output different voltages.
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Figure 1. Schematics of Lattice Converters: (a) Example of 3 × 3 Lattice Converter wiring diagram.
Each edge is an H-bridge converter, shown with more details in Section 2.1; (b) Schematic of a 3 × 3
Lattice Converter (Above); Schematic of a 4 × 4 Lattice Converter (Below).

While lattice converters outstrip other modular multilevel converters with increased
freedom and broader applications, their advantages come at the cost of added control
complexity. As shown in Figure 1a, a simple 3× 3 lattice converter consists of 12 edges, each
representing an H-bridge with four possible states, offering a large number of controllable
degrees of freedom. Among the many control options, some are especially desirable
because of their high efficiency and viability.

In order to find the preferable control options, this article focuses on two problems:
efficiency optimization and node voltage solution. Section 2 explains the modeling process
of lattice converters that sets the ground for further analyses. Section 3 introduces the
algorithm to solve the two problems and find the optimized control options in details.
Section 4 presents the results and analyses regarding 3 × 3 and 4 × 4 lattice converters.
Section 5 summarizes the article.



Electronics 2022, 11, 594 3 of 18

2. Fundamentals and Modeling of Lattice Converters
2.1. Lattice Converters and H-Bridges

As discussed in Section 1, lattice converters are controlled via the manipulation of
individual edges, or H-bridges. This section briefly discusses H-bridge control. Figure 2
shows an example of the H-bridge utilized in lattice converters. A particular H-bridge
consists of four semiconductor switches and a voltage source, either a battery or a capacitor.
Assuming the current flowing in through the left terminal and flowing out from the
right terminal, the H-bridge can perform one of the four voltage conversion functions by
controlling the on/off states of the switches. In the first state, +1, the H-bridge outputs a
positive voltage of Vdc by turning on switches S2, S3. Alternatively, the H-bridge can be in
the state of –1, lowering the voltage by Vdc by turning on switches S1, S4. The third state 0
is a short circuit with all upper/lower switches on. Finally, the off state is an open circuit
with all switches off. Open circuit H-bridges are fundamentally different from the other
three, since it alters the topology of the lattice converter, and thus is named differently from
other states. The fact that each edge can have four different states makes lattice converters
extremely versatile, enabling them to be controlled and optimized to serve a wide range
of purposes.
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Figure 2. An H-bridge Used as an Edge in Lattice Converters.

2.2. Modeling of Lattice Converters

Graph theory serves to solve the two aforementioned problems and describe compli-
cated lattice structures formally. We treat lattice converters as graphs consisting of nodes
and edges. Connected edges represent H-bridges in either +1, –1, or 0 states. If two nodes
are next to each other in the vertical or horizontal direction but are not connected by an
edge, then there is an off H-bridge in-between. Each node is numbered, and the lattice
graph is represented as an adjacency matrix. For a grid lattice of size a × a, the adjacency
matrix is an a2 × a2 symmetric matrix. If the state of an H-bridge connecting two nodes
(x, y) is not off, the matrix elements on the xth row and yth column as well as the yth row and
xth column of the adjacency matrix would be 1, while otherwise being 0. Figure 3 shows an
example of such an adjacency matrix.
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With the help of the adjacency matrix, it is possible to find paths that electrical currents
go through when traveling across the lattice converter. Given a pair of starting and
destination nodes, such paths can be extracted and represented as a sequence of nodes
through which currents travel. In Figure 3, for example, a path starting from node 0 and
ending at node 8 can be [0, 1, 4, 5, 8]. This path is reflected in the adjacency matrix by the
elements (1, 2), (2, 5), (5, 6), (6, 9), being one.

A lattice graph can therefore be viewed as a combination of paths, making it simple to
optimize efficiencies and solve for node voltages.

3. Efficiency Optimization Calculations and Node Voltage Solutions
3.1. Efficiency Optimization

Lattice converter efficiency optimization is desirable due to the large number of control
options even with strict requirements, including lattice size, input/output terminals, as
well as desired output voltages and currents. We find that for a lattice converter of given
size, the efficiency depends solely on whether each edge is at the open circuit state (the
off state) or not. Therefore, a graph indicating where the edges are connected serves as the
solution to the efficiency optimization problem. In this way, most efficient solutions can
help minimize dissipated energy, converting more input power to useful output power.

The method of enumeration is employed to find the best graph. All possible graphs
are exhausted by paralleling different numbers of paths, i.e., from paralleling one path to
paralleling all paths. The efficiencies of all possible graphs with a given size are calculated
and compared.

To find the efficiency of a given graph, each H-bridge is considered to have a total
internal resistance r of the voltage source and non-ideal switches. The voltage at the starting
node is treated as 0 V, while the voltage at the destination node is the output voltage, Vout.
The load resistance is Rload. Therefore, the efficiency η of the given lattice converter is

η =
Poutput

Ptotal
, (1)

where
Poutput = V2/R (2)

Ptotal = Poutput + Pdissipated. (3)

where Pdissipated can be found by summing the power dissipated on each H-bridge. Suppose
the current passing through a particular H-bridge, α, is iα,

Pdissipated = ∑α
i2αr, (4)

Therefore, the problem reduces to finding iα for each edge, for which we can create

an unknown vector
→
i to be solved for. To achieve this, we write and solve the Kirchhoff

current and voltage laws (KCL and KVL). Both laws can be represented using matrices
corresponding to the lattice converter graph, making it simple to write down a system
of linear equations and solve for the current on each edge. In this article, we use the
lattice converter shown in Figure 3 to illustrate the process for writing down KCL and
KVL equations.

The KCL is associated with the graph’s incidence matrix. The incidence matrix shows
the relationship between nodes and edges. Each column represents an edge while each
row represents a node. If the matrix element on the xth row and yth column is 1, then the
edge labeled y is pointing towards the node labeled x; if the element is –1, then the edge is
leaving the node; and if the element is 0, then the edge is not connected to the node. The
incidence matrix of the graph shown in Figure 3 follows.
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I =



−1 −1 0 0 0 0 0 0 0
1 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 −1 −1 0 0 0 0
0 0 1 1 0 −1 1 0 0
0 0 0 0 0 1 0 −1 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 −1
0 0 0 0 0 0 0 1 1


. (5)

Translating this matrix into circuit languages, a + 1 represents the current flowing into
the node, a − 1 means the current leaving the node, and a 0 means no current. According
to each row of the incidence matrix, the KCL can then be written as

I
→
i =

→
b , (6)

where the vector
→
b has zero entries except for the ones corresponding to the starting and

the destination nodes. Letting Iout = Vout/Rload be the output current, the vector element
representing the starting nodes should be −Iout since current is flowing into the node

while vector
→
b is on the other side of the equation. On the other hand, the vector element

representing the destination node should be + Iout.
While this system of linear equations gives nine equations for the nine unknown edge

currents in Figure 3, one of the equations is trivial (node 2 is not connected to any other
nodes), necessitating the incorporation of KVL equations. To find KVL equations, we need
to identify the basis cycles for a given graph. For the example shown in Figure 3, there
are two basis cycles: the first consists of edges [(0, 1), (1, 4), (4, 3), (3, 0)], the second [(4, 5),
(5, 8), (8, 7), (7, 4)]. Since all loops in lattice converters consist of an even number of edges,
we can always define loops to be clockwise, so that they point to the same direction as the
first half of edges and point to the inverse direction as the second half of edges in the loop.
In addition, although each H-bridge converter has the ability to raise/lower the voltage by
1 or to keep it the same, it is assumed that each node has a unique voltage (explained more
in detail in Section 3.2). This leads to the fact that the total voltage change by the H-bridge
converters in each loop equals zero, leaving only the current terms in the KVL equation.
We can further eliminate the internal resistance on all terms since it is the same for every
edge. The KVL equations for Figure 3 can be written as

[
1 −1 1 −1 0 0 0 0 0
0 0 0 0 0 1 −1 1 −1

]


i1
i2
i3
i4
i5
i6
i7
i8
i9


=
→
0 . (7)

Solving systems (6) and (7) yields iα for each edge which is stored in vector
→
i . There-

fore, the efficiency of the lattice converter is

η =
Vout

2/Rload

Vout
2/Rload + ∑α i2αr

. (8)

Computing and comparing the efficiencies of all possible lattice converter graphs, we
can find the most efficient graph. The algorithm is summarized below:
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(1) Given a lattice size, the adjacency matrix for a graph with all edges connected (none
in the off state) is found with function MatrixGen(size) to be A;

(2) All possible paths from the input node to the output node are found with AllPathStore
and stored in all_path;

(3) Paralleling n paths, (n running from one to all paths), a function EfficiencyOpt is
applied. Inside the EfficiencyOpt function;

a. First, select n paths from all_path. Then combine the n selected paths to form
the new adjacency matrix, B, for the particular configuration;

b. Second, apply the FindEfficiency function (Equation (8)) to find the circuit
efficiency of B;

c. Store the matrix B and the efficiency ηB, and compare to find the maximum
efficiency and the corresponding matrix within the loop;

(4) Find the maximum efficiency and the corresponding matrix for all n’s, and construct
the resulting graph from the matrix.

It is worth noting that with this algorithm, it is possible to store all the configurations
with high efficiencies in order. In the case of possible damages to H-Bridge modules,
preventing the optimized choice, it is easy to select another control option with highest
efficiency given the constraint.

3.2. Node Voltage Solutions

Node voltage solutions are a set of voltages assigned to each node of the lattice
converter. They are sufficient to fully determine the state of each edge and provide unique
control algorithms. There are three conditions that node voltages must follow: (1) the
voltage at the starting node is 0 V, (2) the voltage at the destination node is the desired output
voltage, and (3) the voltage difference between any two connected neighboring nodes can
only be +1, −1, or 0 given the four functions of H-bridges. Satisfying these conditions and
with the specific voltage at each node, a lattice converter can be completely defined.

To solve for node voltages, several important assumptions are made: (1), voltage drops
on each edge due to internal resistances are ignored, and (2), each node is considered to
have a unique voltage.

First, although there is power dissipated when the current flows through an edge, the
voltage drop invoked is ignored. Such a simplification is justified by the small internal
resistance. Between two given nodes connected by an H-bridge α, let iα be the current
flowing through the edge α and r be the internal resistance of the edge. The voltage drop
due to power dissipation on a single edge can be represented as

Vdrop = iαr. (9)

In practical cases, r is rather small and iα typically moderate so that the overall voltage
drop is negligible for control.

The second assumption makes sure that each node corresponds to a unique voltage
value. Since each connected H-bridge can lower the voltage by Vdc, raise it by Vdc, or
keep it the same, situations such as the one described in Figure 4 seem possible, where
the displayed converter states lead to a disagreement on node 3. These situations are
undesirable and should be avoided. Paralleling different voltage sources would generate a
large amount of current, causing potential danger. In addition, a clear output voltage is
required at the destination, while uncertainties regarding any nodes in-between the starting
and the destination node would disturb this clarity and lead to a twisted output voltage.
Given these disadvantages, invalid states such as the one shown in Figure 4 are avoided
when designing lattice converters, leading to the second assumption that each node has a
unique voltage while H-bridges are controlled to satisfy these node voltages.
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These two assumptions help simplify and clarify the problem. To explicitly solve
for node voltages, we first determine the possible voltage assignments on each path. For
example, if the output voltage requirement is 3, then the path [0, 1, 4, 5, 8] can have node
voltages [0, 0, 1, 2, 3], [0, 1, 1, 2, 3], [0, 1, 2, 2, 3], and [0, 1, 2, 3, 3].

Then, path voltages are combined and the ones compatible (per the second assumption)
are kept. Therefore, each node receives a unique voltage assignment that is consistent
with the output voltage requirements. The solution would then determine how to control
individual H-bridges. The algorithm is summarized below:

(1) Given a lattice configuration A, all possible paths from the starting to the destination
nodes are found and stored in all_path with AllPathStore;

(2) Find the range of possible voltages for each node. This step is important to simplify
the algorithm and reduce the computation time. For the input node, both the lower
and upper limits are 0. For the output node, both are the desired output voltage. For
any undefined node in-between, we first start from the input node to find the possible
range by looking at a connected node with previously defined voltage ranges. We
then perform the same algorithm but starting from the output node. We compare
the ranges obtained from both directions and record the greater lower limit and
smaller upper limit. For example, with a desired output voltage of 2 V and the circuit
configuration shown in Figure 3, we first define the range for node 0 to be [0, 0] and
the range for node 8 to be [2, 2]. Then, starting from node 0, for node 1 and 3, the
voltage range can be [−1, 1]; for nodes 4 and 6, [−2, 2]; for nodes 5 and 7, [−3, 3].
Starting from node 8, we have for nodes 7 and 5, [1, 3]; for nodes 4 and 6, [0,4]; for
nodes 1 and 3, [−1, 5]. Comparing both, we obtain voltage ranges for nodes 1 and 3,
[−1, 1]; for node 4, [0, 2]; for node 6, [−2, 2]; and for nodes 5 and 7, [1, 3];

(3) For each path, we find the possible path voltage combinations by combining possible
voltages of individual nodes passed by the path. Continuing the previous example,
with a path passing through nodes [0, 1, 4, 7, 8], we have the possible voltage ranges
for each node: {[0, 0], [−1, 1], [0, 2], [1, 3], [2, 2]}, which means the possible voltage
values for each node are {[0], [−1, 0, 1], [0, 1, 2], [1, 2, 3], [2]}. Looping through all com-
binations and keeping only the ones meeting requirement of voltage differences with
connecting nodes, we obtain 10 possible path voltages: [0, −1, 0, 1, 2], [0, 0, 0, 1, 2],
[0, 0, 1, 1, 2], [0, 0, 1, 2, 2], [0, 1, 0, 1, 2], [0, 1, 1, 1, 2], [0, 1, 1, 2, 2], [0, 1, 2, 1, 2],
[0, 1, 2, 2, 2], [0, 1, 2, 3, 2];

(4) Finally, we combine the path voltages if they are compatible with each other. We first
turn the path voltages into node voltages by inserting them into arrays where the
index correspond to the node number, i.e., turn [0, −1, 0, 1, 2] into [0, −1, x, x, 0, x,
x, 1, 2], where the “x” indicates that this node voltage has not be specified yet. For
two node voltages to be compatible, voltage on each node must be either (1) the same
for both, (2) unspecified for one, or (3) unspecified for both. If either of the conditions
is met, the two path voltages will be combined into one single output. For the example
we have been using, we obtain 34 distinct node voltage solutions.
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4. Results
4.1. Setup and Finding Paths

The complexity of a lattice converter largely depends on its size. If a lattice is of size
a × a, then it has a2 nodes and 2a(a− 1) edges. Figure 5 shows the growth of number of
nodes/edges as the lattice expands.
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The increasing complexity of lattice converters is reflected in the total number of paths.
The total number of paths depends on the starting node and the destination node, as well
as the lattice size. Using the path-finding method described in Section 2.1 and counting the
resulting paths between two nodes, the total number of paths can be determined. Given
that all starting nodes are in the bottom left corners, and all destination nodes are in the
top right corners, the relationship between the number of paths and the lattice size are
listed as follows: a size-2 lattice has 2 paths; a size-3 lattice has 12 paths; a size-4 lattice
has 184 paths; a size-5 lattice has 8512 paths, etc. We show that expanding the lattice size
by one would result in an exponential growth in number of paths. While such expansion
adds extra degrees of freedom to lattice converters, it also makes them much more difficult
to control.

Therefore, this paper focuses on smaller lattice size such as 3 × 3 and 4 × 4, which are
simpler to examine while preserving the versatility and intricacy of lattice converters. For a
fully connected 3 × 3 lattice, we find 12 paths from node 0 to node 8. Two examples are
shown in Figure 6.

Electronics 2022, 11, x FOR PEER REVIEW 9 of 18 
 

 

  
(a) (b) 

Figure 6. Example paths between nodes 0 and 8: (a) Path [0,3,6,7,4,1,2,5,8]; (b) Path [0,3,6,7,8]. 

Table 1 shows the classification of all paths for a 3 × 3 lattice. Path size is described 
by how many edges the particular current path passes through. Such a categorization is 
especially useful in the application of efficiency optimization, since longer paths repre-
sent larger internal resistance, given similar total voltage and current conditions. 

Table 1. Classification of 3 × 3 lattice paths from node 0 to node 8 according to Path Size. 

Path Size Number of Paths Path Representations 

4 6 

[0,1,2,5,8] 
[0,1,4,5,8] 
[0,1,4,7,8] 
[0,3,6,7,8] 
[0,3,4,7,8] 
[0,3,4,5,8] 

6 4 

[0,1,2,5,4,7,8] 
[0,1,4,3,6,7,8] 
[0,3,6,7,4,5,8] 
[0,3,4,1,2,5,8] 

8 2 
[0,1,2,5,4,3,6,7,8] 
[0,3,6,7,4,1,2,5,8] 

4.2. Efficiency Optimization 
4.2.1. 3 × 3 Lattice Converter 

For a lattice converter of size 3 × 3, we find and compare the efficiencies of all pos-
sible graphs using the algorithm introduced in Section 3.1. We first choose the input port 
to be node 0 and the output port to be node 8. We then find all graphs by combining n 
number of paths, looping n from one to twelve paths for the 3 × 3 lattice. For example, 
when combining three paths, three out of the twelve paths shown in Table 1 are selected 
at random and paralleled to form a graph. We find that the most efficient 3 × 3 lattice 
graph is the one that is fully connected, as shown in Figure 7. In particular, with a load 
resistance of 10 Ω and internal resistance of 0.01 Ω, the maximum efficiency achieved 
with Figure 7 is 99.85%. 

Figure 6. Example paths between nodes 0 and 8: (a) Path [0,3,6,7,4,1,2,5,8]; (b) Path [0,3,6,7,8].

Table 1 shows the classification of all paths for a 3 × 3 lattice. Path size is described
by how many edges the particular current path passes through. Such a categorization is
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especially useful in the application of efficiency optimization, since longer paths represent
larger internal resistance, given similar total voltage and current conditions.

Table 1. Classification of 3 × 3 lattice paths from node 0 to node 8 according to Path Size.

Path Size Number of Paths Path Representations

4 6

[0,1,2,5,8]
[0,1,4,5,8]
[0,1,4,7,8]
[0,3,6,7,8]
[0,3,4,7,8]
[0,3,4,5,8]

6 4

[0,1,2,5,4,7,8]
[0,1,4,3,6,7,8]
[0,3,6,7,4,5,8]
[0,3,4,1,2,5,8]

8 2 [0,1,2,5,4,3,6,7,8]
[0,3,6,7,4,1,2,5,8]

4.2. Efficiency Optimization
4.2.1. 3 × 3 Lattice Converter

For a lattice converter of size 3 × 3, we find and compare the efficiencies of all possible
graphs using the algorithm introduced in Section 3.1. We first choose the input port to
be node 0 and the output port to be node 8. We then find all graphs by combining n
number of paths, looping n from one to twelve paths for the 3 × 3 lattice. For example,
when combining three paths, three out of the twelve paths shown in Table 1 are selected at
random and paralleled to form a graph. We find that the most efficient 3 × 3 lattice graph
is the one that is fully connected, as shown in Figure 7. In particular, with a load resistance
of 10 Ω and internal resistance of 0.01 Ω, the maximum efficiency achieved with Figure 7
is 99.85%.
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Figure 7. Most efficient graph for 3 × 3 lattice converter from node 0 to node 8.

This result matches the intuition that paralleling more paths leads to a decreased
current on each path, therefore resulting in increased efficiency. In addition, the symmetry
allows the output current to be shared evenly among edges, avoiding high dissipated
power on particular H-bridge converters.

Figure 8 shows the relationship between maximum/minimum efficiencies and the
number of paths paralleled. Although there are fluctuations, adding more paths signifi-
cantly reduces the difference between maximum and minimum efficiencies. When 8 out
of the 12 paths are paralleled, all edges are connected, leading to the coincidence between
maximum and minimum efficiencies. The lattice converter has a minimum efficiency of
99.2% when there is one path of size 8, and it has a maximum efficiency of 99.85% when two
or more paths are paralleled to form a fully connected lattice, achieving a 0.66% difference
between the two extreme cases.
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lattice converter.

Similar results can be obtained for other starting and destination nodes. We select
a different pair of input/output terminals, find all possible graphs, and compute the
efficiencies corresponding to each graph. We then compare the results and keep the most
efficient graph. Figure 9 shows the most efficient graph for a lattice converter starting from
Node 0 and outputting at Node 6. With the same load and internal resistance conditions,
the best efficiency is 99.87%.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 18 
 

 

 

Figure 9. Most efficient graph for 3 × 3 lattice converter from node 0 to node 6. 

4.2.2. 4 × 4 Lattice Converter 
For a 4 × 4 lattice from node 0 to Node 15, the most efficient graph is again the fully 

connected one, shown in Figure 10. A similar conclusion can be drawn that the most ef-
ficient graphs are the ones that parallel as many paths as possible. The efficiency of this 
graph with load resistance of 10 Ω and internal resistance of 0.01 Ω is 99.81%.  

 
Figure 10. Most Efficient Graphs for 4 × 4 Lattice Converter from Node 0 to Node 15. 

4.2.3. Internal and Load Resistances 
While all previous efficiency data are based on output voltage of 3 (3 × 3) or 5 (4 × 

4), load resistance of 10 Ω, internal resistance of 0.01 Ω for each edge, and 1 voltage 
source for each edge, these conditions can vary, and we should examine the effect of 
such variations to the efficiencies of the lattice graphs. Analyses show that neither out-
put voltage nor converter voltage affects converter efficiency, while both load and inter-
nal resistances affect it. The first subplot of Figure 11 shows the efficiency of the lattice 
converter shown in Figure 7 raising with a slowing rate as the load resistance increases. 
The second subplot of Figure 11 shows a reverse trend of efficiency decreasing (almost 
linearly) as internal resistance increases. Both trends are straightforward in showing that 
a larger difference between load resistance and internal resistance (when the difference 
remains positive) would result in higher efficiency. 

Figure 9. Most efficient graph for 3 × 3 lattice converter from node 0 to node 6.

4.2.2. 4 × 4 Lattice Converter

For a 4 × 4 lattice from node 0 to Node 15, the most efficient graph is again the fully
connected one, shown in Figure 10. A similar conclusion can be drawn that the most
efficient graphs are the ones that parallel as many paths as possible. The efficiency of this
graph with load resistance of 10 Ω and internal resistance of 0.01 Ω is 99.81%.

4.2.3. Internal and Load Resistances

While all previous efficiency data are based on output voltage of 3 (3 × 3) or 5 (4 × 4),
load resistance of 10 Ω, internal resistance of 0.01 Ω for each edge, and 1 voltage source for
each edge, these conditions can vary, and we should examine the effect of such variations
to the efficiencies of the lattice graphs. Analyses show that neither output voltage nor
converter voltage affects converter efficiency, while both load and internal resistances affect
it. The first subplot of Figure 11 shows the efficiency of the lattice converter shown in
Figure 7 raising with a slowing rate as the load resistance increases. The second subplot
of Figure 11 shows a reverse trend of efficiency decreasing (almost linearly) as internal
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resistance increases. Both trends are straightforward in showing that a larger difference
between load resistance and internal resistance (when the difference remains positive)
would result in higher efficiency.
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Figure 11. Efficiency of the lattice converter shown in Figure 8 increasing with a slowing rate as load
resistance increases and decreasing linearly as internal resistance increases.

However, t is worth noting that when the discrepancy between the load and internal
resistances becomes too small, the lattice converter may not be able to output the desired
voltage due to increased power dissipation and voltage drop on individual edges.

4.3. Node Voltage Solution

Given the most efficient graphs and a desired output voltage, there are a number
of possibilities for node voltage solutions. For example, there are 18 different solutions
to the most efficient 3 × 3 lattice graph shown in Figure 7 with output voltage of 3,
two of which are shown in Figure 12 with different colors representing different control
strategies. Similarly, there are 144 solutions to the most efficient 4 × 4 lattice shown in
Figure 10 with output voltage 5, one of which is shown in Figure 13. Each of these graphs
finalizes the control actions taken at each edge, providing a complete control strategy for
the lattice converter.
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The total number of solutions depends on both lattice converter topology and output
voltage. For the most efficient topologies shown in Figures 7 and 10, the maximum output
voltage can be ±4, ±6, respectively. As the absolute value of the output voltage approaches
the maximum, the number of possible node voltage solutions drops rapidly. Figure 14
shows such a trend for the example of a 3 × 3 lattice converter.
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4.4. Simulation Results

We built a model in MATLAB/Simulink and simulated both 3 × 3 and 4 × 4 lattice
converters with varying control strategies and measured (1) currents on each H-bridge
to validate the efficiency calculations, and (2) the output voltage to validate the node
voltage solutions.

In practical power converters, the DC voltage source output will typically be 200 V,
with the internal resistance typically being 0.9 Ω. In our simulation, we keep all DC voltages
sources at 1 V for simplicity. To match the scale, we take all internal resistances to be 0.01 Ω.
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For the control strategy represented by blue shown in Figure 12, the predicted current
on each edge versus the simulated current on each edge are shown in Table 2. The average
relative difference between the theoretical and simulated current on each corresponding
edge is only 0.14%, indicating that there is no statistical difference between the predicted
and simulated data. The output voltage across the load resistance is 2.996 V, within 0.13%
difference of the required output. The simulated output voltage and current do not change
with time since the circuit is at its DC steady state.

Table 2. Theoretical and simulated currents on each edge for the control strategy represented by blue
shown in Figure 12.

Edge Predicted Current (mA) Simulated Current (mA) Percent Difference

(0, 1) 150.0 149.8 0.13%
(1, 2) 75.00 74.89 0.15%
(0, 3) 150.0 149.8 0.13%
(1, 4) 75.00 74.89 0.15%
(2, 5) 75.00 74.89 0.15%
(3, 4) 75.00 74.89 0.15%
(4, 5) 75.00 74.89 0.15%
(3, 6) 75.00 74.89 0.15%
(4, 7) 75.00 74.89 0.15%
(5, 8) 150.0 149.8 0.13%
(6, 7) 75.00 74.89 0.15%
(7, 8) 150.0 149.8 0.13%

A similar simulation is performed for the control strategy shown in Figure 13. The
average difference between the calculated and simulated currents on each edge is 0.21%.
The output voltage is 4.991 V, within the 0.18% difference of the required output.

Figure 15 shows the efficiency comparison between an array of different lattice con-
verter graphs. Since it is neither possible nor necessary to show the efficiencies of all
possible graphs, we only present 10 control strategies under the same output voltage and
input/output terminal conditions. While these 10 graphs do not exhaust all possible graphs,
they represent a good number of typical and common graphs along with their symmetric
pairs. In addition, the efficiencies computed using the method described in Section 3.1 and
the simulated efficiencies do not differ by more than 1%. We show that the graph shown in
Figure 7 is indeed the optimized 3 × 3 lattice converter graph.
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Table 3 shows 12 control strategies for the 3 × 3 fully connected lattice converter with
different required outputs and starting/destination terminals. It compares the desired out-
put voltages/currents to the simulated outputs, showing their percent difference. The per-
cent difference between the desired and simulated voltages fluctuates around 0.13%. These
results indicate that lattice converters are capable of producing the desired outputs, whether
positive or negative. Further, they are able to do so with varying input/output ports.

Table 3. Comparison between desired and simulated output voltages and currents. Load resistance
is 10 Ω, internal resistances are 0.01 Ω for all edges.

Control Strategy Input/Output
Ports

Desired
Voltage

Simulated
Voltage

Desired
Current

Simulated
Current

Percent
Difference
between

Desired and
Simulated
Voltages
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Table 3. Cont.

Control Strategy Input/Output
Ports

Desired
Voltage

Simulated
Voltage

Desired
Current

Simulated
Current

Percent
Difference
between

Desired and
Simulated
Voltages
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5. Conclusions

This article proposes a general methodology for control and optimization of lattice
converters. While enjoying scalability and versatility, lattice converters suffer from control
complexity, thus necessitating algorithms for guiding control and optimization. We begin
by introducing two objectives: efficiency optimization and node voltage solution. We then
simplify the problems by employing graph theory and representing lattice structures as
adjacency matrices. With this tool, we calculate the efficiencies of given lattices and optimize
such efficiencies. We further provide the algorithm for finding the voltage at each node,
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which guides the control of individual edges, or H-bridges. Then, we present examples
regarding 3 × 3 and 4 × 4 lattices, showing that with load resistance of 10 Ω and internal
resistance of 0.01 Ω, 3 × 3 lattices can achieve a 99.85% efficiency and 4 × 4 lattices can
have a 99.81% efficiency. Moreover, we present node voltage solutions to the most efficient
3 × 3 and 4 × 4 lattices and explain the multitude of such solutions. Finally, we simulate
the proposed control strategies and verify both efficiency calculations and node voltage
solutions. Future works can focus on simplifying lattice efficiency calculations, further
classifying node voltage solutions, incorporating different internal resistances for each
H-Bridge, considering cases for switch failure, expanding the lattice size, and improving
the robustness of the control algorithm. This work sets the ground for efficient and coherent
lattice converter designs.
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