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Abstract: Rapid advances in perception have enabled large pre-trained models1

to be used out of the box for transforming high-dimensional, noisy, and partial2

observations of the world into rich occupancy representations. However, the relia-3

bility of these models and consequently their safe integration onto robots remains4

unknown when deployed in environments unseen during training. In this work,5

we address this challenge by rigorously quantifying the uncertainty of pre-trained6

perception systems for object detection via a novel calibration technique based on7

conformal prediction. Crucially, this procedure guarantees robustness to distribu-8

tion shifts in states when perceptual outputs are used in conjunction with a plan-9

ner. As a result, the calibrated perception system can be used in combination with10

any safe planner to provide an end-to-end statistical assurance on safety in un-11

seen environments. We evaluate the resulting approach, Perceive with Confidence12

(PWC), with experiments in simulation and on hardware where a quadruped robot13

navigates through previously unseen indoor, static environments. These experi-14

ments validate the safety assurances for obstacle avoidance provided by PWC and15

demonstrate up to 40% improvements in empirical safety compared to baselines.16

Keywords: Uncertainty quantification, occupancy prediction, robot navigation17

1 Introduction18

How can we decide if the outputs of a given perception system are sufficiently reliable for safety-19

critical robotic tasks such as autonomous navigation? Significant strides in perception over the past20

few years have enabled large pre-trained models to be used out of the box [1] for tasks such as oc-21

cupancy prediction, which serves as a fundamental building block for navigation. However, current22

pre-trained models are still not reliable enough for safe integration into many real-world robotic23

systems. Despite being trained on vast amounts of data, these systems can often fail to generalize24

to novel environments [2, 3, 4]. In this paper, we ask: how can we leverage the power of large25

pre-trained occupancy prediction models while providing safety assurances for robot navigation?26

Consider a legged robot tasked with navigating in a cluttered environment such as a home, office, or27

warehouse (Figure 1). A typical navigation pipeline for such a system consists of two modules: (i) a28

perception module that detects obstacles, and (ii) a planner that produces collision-free trajectories29

assuming accurate perception. However, there are two challenges associated with obtaining reliable30

outputs from the perception module. First, the environments in which we deploy our robots will31

be unseen during training, and thus require generalization to new obstacle geometries, appearances,32

and other environmental factors. Second, closed-loop deployment of the perception system in con-33

junction with a planner causes a shift in the distribution of states (e.g., relative locations to obstacles)34

that are visited by the robot. Since the robot’s planner influences future states, the robot may view35

obstacles from unfamiliar relative poses (Figure 1) and cause the perception system to fail.36

In this paper, we address these challenges by performing rigorous uncertainty quantification for37

the outputs of a pre-trained perception system in order to achieve reliably safe (i.e., collision-free)38

navigation. We utilize techniques from conformal prediction [5] in order to lightly process the39

outputs of a pre-trained obstacle detection system in a way that provides a formal assurance on40

correctness: with a user-specified probability 1 − ϵ, the processed perceptual outputs will correctly41
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Figure 1: PWC lightly processes the outputs of a pre-trained perception system (green bounding boxes) using
conformal prediction in order to ensure a bounded misdetection rate despite any distribution shift in states (gray
dots). The calibrated perception system (blue boxes) paired with a non-deterministic filter and a safe planner
provide an end-to-end statistical assurance on safety in new test environments.

detect obstacles in a new environment. To enable this, we assume access to a modest-sized (e.g., |·| =42

400) dataset of environments that are representative of deployment environments with ground-truth43

obstacle annotations, and use these for calibrating the outputs of the perception system. Crucially,44

we propose a novel calibration technique that ensures robustness of the perception system to any45

closed-loop distribution shift in states. Hence, the calibrated outputs can be used in conjunction with46

any safe planner to provide an end-to-end statistical assurance on safety in new static environments47

with a user-specified threshold 1− ϵ. To the best of our knowledge, this is the first work to calibrate48

a given black-box perception system in a way that ensures robustness to closed-loop distribution49

shifts in order to provide end-to-end statistical assurances on safe navigation.50

Our framework, Perceive with Confidence (PWC), is evaluated with experiments in simulation and51

hardware on the Unitree Go1 quadruped navigating in indoor environments with objects that are52

unseen during calibration (Figure 1). We validate PWC’s ability to provide end-to-end statistical53

assurances on collision avoidance, while also providing up to 40% increase in safety with only54

modest reductions in task completion rates compared to baselines that use the pre-trained perception55

model directly, fine-tune it on the calibration dataset, or utilize conformal prediction for uncertainty56

quantification but do not account for closed-loop distribution shift.57

2 Problem Formulation and Overview58

Dynamics and environments. Suppose that the dynamics of the robot are described by st+1 =59

fE(st, at), where st ∈ S is the robot’s state at time-step t, at ∈ A is the action, and E ∈ E is the60

environment that the robot operates in during a given episode. We primarily focus on navigation61

with static obstacles; in this context, the environment E specifies the locations and geometries of62

objects. We assume that environments that the robot will be deployed in are drawn from an unknown63

distribution DE , e.g., a distribution over possible rooms that the robot may be deployed in. We64

will make no assumptions on this distribution besides the ability to sample a finite dataset D =65

{E1, . . . , EN} of i.i.d. environments from DE .66

Sensor and perception system. The robot is equipped with a sensor σ : S × E → O that provides67

observations ot = σ(st, E) (e.g., depth images) based on the robot’s state and environment. We68

assume access to a pre-trained perception model ϕ : O → Z , which processes raw sensor observa-69

tions into an occupancy representation of the environment. In this paper, we work with perception70

models for obstacle detection that output 3D bounding boxes. The representations (z0, . . . , zt) up71

to the current time-step are aggregated into an overall representation mt ∈ M (e.g., a map).72

Policy. The representation mt is used by a planning algorithm in order to produce actions. Denote73

the resulting end-to-end policy that utilizes a perception model ϕ by πϕ : Ot+1 → Zt+1 → M →74

A, which maps histories of sensor observations to actions.75

Safety and task performance. Let Csafe
E be a cost function that captures safety (e.g., obstacle76

avoidance). Specifically, let S0,E denote the allowable set of initial conditions in environment E.77

Then, Csafe
E (πϕ) ∈ {0, 1} assigns a cost of 0 if policy πϕ maintains safety from any initial state78
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s0 ∈ S0,E when deployed over a given time horizon in environment E, and a cost of 1 otherwise.79

An additional cost function C task
E can be used to capture task performance (e.g., time to reach a goal).80

Goal: statistical safety assurance. Our goal is to provide a statistical assurance on safety for the81

end-to-end policy πϕ. We propose a procedure that uses a finite dataset D of environments in order82

to produce a calibrated perception system ϕ̄ : O ϕ−→ Z ρ−→ Z . Our approach is modular: outputs of83

the calibrated perception system may be used with any safe planner (cf. Section 4) to ensure:84

Csafe
DE

(πϕ̄) := E
E∼DE

[
Csafe

E (πϕ̄)
]

≤ ϵ, (1)

for a user-specified safety tolerance ϵ, while also post-processing outputs from ϕ as lightly (i.e.,85

non-conservatively) as possible in order to allow the robot to optimize task performance.86

3 Offline: Calibrating the Perception System87

In this section, we describe our approach to the uncertainty quantification of a pre-trained perception88

system. We focus on the challenges highlighted in Section 1: providing statistical assurances on safe89

generalization to novel environments and ensuring that the offline calibration procedure is robust to90

shifts in the distribution of states induced by the online implementation of the planner.91

3.1 Misdetection Rate and Closed-Loop Distribution Shift92

We focus on perception systems that output bounding boxes that predict the locations of objects in93

the environment. As an example, Figure 1 (left) shows one such real-world environment wherein94

the union A of the black boxes denotes the ground-truth locations of the chairs. Let Bs denote the95

union of the green bounding boxes predicted by the perception system ϕ from robot state s ∈ S.96

Since the environment in which the robot is deployed may contain partially occluded objects that ϕ97

was not explicitly trained on, the perception system’s outputs may be inaccurate.98

Closed-loop distribution shift. In addition to this challenge of generalization, we highlight another99

challenge that any uncertainty quantification method for perception must tackle. Suppose we fix a100

policy πϕ (that uses perception system ϕ) and collect a dataset of observations in different calibration101

environments from the states that result from applying πϕ. We can use ground-truth bounding boxes102

in these environments to produce a calibrated perception system ϕ̄ with a statistical assurance on103

correctness for the distribution of observations induced by πϕ. However, if we now apply the policy104

πϕ̄ using the calibrated perception system ϕ̄, the resulting distribution of states will be different105

from the distribution that forms the calibration dataset, thus invalidating the statistical assurance.106

We refer to this challenge as closed-loop distribution shift, which is similar to challenges that arise107

in offline reinforcement learning [6] and imitation learning [7].108

Our key idea for tackling closed-loop distribution shift is to use a policy-independent misdetec-109

tion cost, C̄E , which considers worst-case errors across all states in an environment1, C̄E(ϕ) :=110

maxs∈S 1A ̸⊆Bs
. We will present a calibration procedure that allows us to bound this misdetection111

cost with high probability in a new environment, and thus guarantee the correctness of the calibrated112

perception system independent of the robot policy using conformal prediction (CP).113

3.2 Calibration Procedure114

Dataset. We assume access to a dataset of N i.i.d. environments D = {E1, . . . EN} ∼ DE (cf.115

Section 2). In each environment, Ei, we have access to the union Ai of the ground-truth bounding116

boxes of all the objects in the environment and the unions Bs,i of the predicted bounding boxes117

generated by the pre-trained perception system ϕ from each state s ∈ S. We construct the calibration118

dataset either using real-world environments or create simulation environments using real-world119

data [8, 9, 10] to ensure that the calibration dataset is representative of deployment environments.120

1It would be infeasible to consider all possible states in an environment. In practice, we use a sampling-
based motion planner and consider a fixed set of samples for our calibration that could be used by any planner.

3



Calibration. In each calibration environment Ei, we find the inflation ∆qi of the bounding box121

predictions Bs,i so as to ensure that all the ground-truth boxes are fully enclosed by the inflated122

boxes, i.e, A ⊆ Bs,i +∆qi ,∀s ∈ S . Here, Bs,i +∆qi refers to the inflation of each bounding box123

in the union Bs,i by 2qi along each dimension. We define the non-conformity score for environment124

Ei to be the minimum required inflation in that environment (background on CP in Appendix A):125

Ui = min
qi

qi s.t Ai ⊆ Bs,i +∆qi ,∀s ∈ S. (2)

Observe that Ui ≤ 0 =⇒ Ai ⊆ Bs,i, ∀s ∈ S and a growing Ui signals a worse performance of126

the pre-trained perception system. We compute the nonconformity scores for all our i.i.d. sampled127

environments {E1, . . . , EN}. Hence, the following guarantee holds for the non-conformity score,128

Utest, in a new environment, Etest, with probability 1−δ over the sampling of the calibration dataset,129

P[Utest ≤ q̂1−ϵ|U1, . . . , UN ] ≥ Beta−1
N+1−v,v(δ), v := ⌊(N + 1)ϵ̂⌋, (3)

where, Beta−1
N+1−v,v(δ) is the δ−quantile of the Beta distribution, and we use a modified ϵ̂ for130

calibration to achieve the desired 1 − ϵ coverage, i.e., we compute the associated quantile q̂1−ϵ as131

the ⌈(N + 1)(1− ϵ̂)⌉th largest value of all the non-conformity scores collected during calibration.2132

Proposition 1 Consider the calibrated perception system ϕ̄ that modifies every bounding box output133

of the perception system ϕ by scaling the predicted bounding boxes as B̄ = B + ∆q̂1−ϵ
. With134

probability 1 − δ over the sampling of the dataset used for calibration, the calibrated perception135

system, ϕ̄, is guaranteed to have an ϵ-bounded misdetection rate on new test environments:136

E
Etest∼DE

[
C̄Etest(ϕ̄)|U1, . . . , UN

]
≤ ϵ. (4)

The above proposition (proof in Appendix B) gives us a formal assurance on the correctness of the137

perception system independent of the robot’s policy. As we describe below, the calibrated perception138

can thus be combined with any safe planner to bound the collision rate to ϵ.139

4 Online: Perception and Planning140

(a) A line-of-sight depth sensor along
with a bounding box estimator partition
the configuration space into three.

(b) The non-deterministic filter takes in-
tersection over the occupied space and
takes union over the free space.

Figure 2

We now focus on the online imple-141

mentation of the method described142

in Section 3 to reduce conservatism143

when used in conjunction with a safe144

planner. In general, a safe planner145

takes into account the dynamics of146

the robot and produces plans in the147

state space S. We call X the con-148

figuration space of the robot (e.g.,149

x-y location for a point). For any150

given environment E, we partition X151

into three sub-spaces (Figure 2a): the152

known free space X free, known occu-153

pied space X occ, and unknown space X unknown.154

Non-deterministic filter. We utilize the assurance obtained from Section 3 to implement a non-155

deterministic filter [11, Ch. 11.2.2] which shrinks the occupied space and grows the known free156

space over time. Suppose the robot’s perceived partition (i.e., map) of the configuration space X157

at time t is mt := (X free
t ,X occ

t ,X unknown
t ). At a new time step t + 1, the robot returns a new158

set of bounding box predictions, X̂ occ
t+1. The filter then updates the new perceived occupied space159

with X occ
t+1 = X occ

t ∩ X̂ occ
t+1. We then compute the new estimate of free space X̂ free

t+1 based on X occ
t+1,160

2In practice, we choose the calibration threshold ϵ̂ such that the dataset conditional guarantee (3) achieves
the desired (1− ϵ)−coverage with probability 1− δ = 0.99 over the sampling of the calibration dataset.
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considering occlusions and limited field of view. Figure 2b shows the non-deterministic filter applied161

for one instance. The new perceived free space is updated with X free
t+1 = X free

t ∪ X̂ free
t+1.162

The non-deterministic filter pairs effectively with our method in Section 3 for two key reasons: 1) it163

mitigates the conservatism of our bounding box expansion by intersecting X occ
t , rapidly reducing its164

size even if the initial prediction with CP bounds appears generous; and 2) Prop. 1 ensures that with165

high probability in a new test environment, X free
t never intersects the true occupied space X occ. We166

demonstrate the rapid expansion of known free space in Figure 3 for our simulated setup (Sec. 5).167

Safe planning. With our formal assurance on the estimated free space X free
t , we can utilize any safe168

planner [12, 13, 14] to ensure end-to-end safety, as long as the planner includes a safety filter that169

takes into account the robot’s dynamics in order to reject potentially unsafe actions with the assump-170

tion of known state and static (but unknown) environment [15, Corollary 1.4]. For our simulation171

and hardware experiments, we use the safe planner proposed in [16], which enforces an inevitable172

collision set (ICS) constraint [17]. We describe implementation details in Appendix D.173

Proposition 2 For any user-specified safety tolerance ϵ, the calibrated perception system ϕ̄ in174

Proposition 1 combined with any safe planner that chooses actions based on the outputs of the175

non-deterministic filter ensures the end-to-end safety for the overall policy πϕ̄:176

Csafe
DE

(πϕ̄) := E
E∼DE

[
Csafe

E (πϕ̄)
]
≤ ϵ, (5)

where Csafe
E (πϕ̄) is the cost function for safety from Section 2.177

This result (proved in Appendix E) is a direct consequence of the formal assurance on the calibrated178

perception system that ensures correctness from any state in a new test environment (sampled i.i.d.179

from the same distribution as the calibration environments) with probability 1−ϵ over environments.180

5 Simulated Experiments: Vision-Based Navigation181

(a) Simulation environment in Pybullet.

(b) t = 1 (c) t = 8

(d) t = 14 (e) t = 17

Figure 3: Simulation and non-deterministic filter updates. (a) An example environment in simulation. (b - d)
The robot begins with large occupied space predictions due to the inflation obtained through offline calibration
(Section 3). After a few updates, the predicted occupied space X occ

shrinks significantly.

We evaluate our approach for vision-based navigation in the PyBullet simulator [18] using a diverse182

set of chairs from the 3D-Front dataset [10]. We use the 3DETR end-to-end transformer model [19]183

as our pre-trained perception system.184

Baselines. We compare our approach (Perceive with Confidence — PWC) to three baselines to illus-185

trate its effectiveness in achieving a user-specified safety rate. First, we consider the most common186

approach of directly using the outputs of the perception system [19] in our planning pipeline. We187

call this baseline 3DETR. Next, we consider the common practice of fine-tuning the outputs of the188
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VLM

What did I leave on the sofa? A) Hat 
B) Backpack C) Laptop D) Jacket

Semantic 
values

Semantic-value-weighted 
Exploration

(x, y, yaw) Next Pose

New Observation

Semantic map

A - 0.28
B - 0.17
C - 0.12
D - 0.43

Stop?
Answer 

prediction

Question-Image 
relevance

0.10 1.72
0.98
0.59

Blocksworld

<Rules>

<Examples>

Current problem

Initial: red block is on top of 
the orange block, orange 
block is on top of blue block, 
yellow block is on top of red 
block and blue block is on 
the table.

Goal: red block is on top of 
the yellow block and yellow 
block is on top of blue block

(3) 

(1)

(2) 

[0, 3, 1, 4]

[4, 1, 3, 0]reverse

[3, 1, 4, 0]
shift_left 

...

[1, 3, 0, 4]shift_left 

swap [0, 1, 4, 3]

[0, 4, 1, 3]reverse

Self-verification

Forward/Backward planning

Plan the initial to final steps.

Or

Choose a direction

Plan the final to initial steps.

Forward plan

Plan: [shift_left, repeat]
[4, 8, 3, 4] shift_left -> [8, 3, 4, 4]
…
Matches final? <Yes/No>

Reversed backward plan

Final answer

[repeat, shift_left]

Flip the problem

Initial: red on yellow on blue

Goal: yellow on red on 
orange on blue

Plan with the flipped

1. Unstack red from yellow
…
5. Put yellow on red

1. Unstack yellow from red
…
5. Put red on yellow

Flip back the plan

(Directed) Graph Planning

<Examples>

Current problem

Node 0 points to nodes 4, 5, 8
Node 1 points to nodes 0, 9
…
Node 9 points to 6
Node 10 points to nodes 1, 9

Initial: 0

Goal: 9

Flip the problem

Node 0 points to 1, 2
Node 1 points to 10
…
Node 9 points to 1, 10
Node 10 points to 8

Initial: 9

Goal: 0

Plan with the flipped

Flip back the plan

(0, 4, 8, 10, 9)

(9, 10, 8, 4, 0)

Simulation Hardware

Figure 4: (Left) Results for the simulated experiments described in Section 5. Simulations are across 100 new
environments with 1 - 5 chairs. (Right) Results for the hardware trials described in Section 6. Experiments are
across 30 different chair configurations with 4-8 chairs present in each configuration. Here the path length is
averaged only for successful trials for both PWC and CP-avg. due to the varying goal locations.

perception system using a small dataset of task-representative environments Dtune (cf. Section F.1).189

We call this perception system 3DETR-fine-tuned. Lastly, we perform calibration using confor-190

mal prediction; however, instead of accounting for the closed-loop distribution shift, we bound the191

misdetection rate averaged across environments and states (similar to [20], which does not utilize192

conformal prediction, but quantifies expected errors in a perception system for a pre-defined distri-193

bution of states). We refer to this baseline as CP- avg. We consider two variations of our approach194

for comparison to the above baselines. First, we refine 3DETR outputs using our calibration proce-195

dure described in Section 3. We call this approach PWC. Second, the 3DETR outputs are fine-tuned196

and calibrated using split conformal prediction as described in Appendix F.1; we call this approach197

PWC-fine-tuned. Details regarding calibration and the planner setup are provided in Appendix G.198

Figure 5: As we relax the confi-
dence threshold by increasing ϵ, the
misdetection rate increases but re-
mains bounded for PWC. The baseline
method has a misdetection rate much
higher than acceptable.

Results: Misdetection Rate. We first compare our method,199

PWC, to the baseline CP-avg that is also calibrated using con-200

formal prediction but without accounting for the closed-loop201

distribution shift. We compare the misdetection rate, i.e.,202

whether obstacles in the scene are classified as free space at203

any point during a trial. We vary the allowable misdetection204

bound ϵ for each method, and compute the rate of misdetec-205

tions in 100 test environments. As seen in Figure 5, our method206

is guarantees a rate of misdetection lower than the threshold ϵ207

while CP-avg violates this threshold for every ϵ considered.208

Results: Collision Rate. We compare PWC to the baselines209

in 100 new environments drawn from the same distribution as210

calibration environments. Figure 3 illustrates one such test en-211

vironment and the evolution of the free space in this environment using PWC. Figure 3 shows that212

though the initial calibrated perception system outputs are inflated, the non-deterministic filter is able213

to expand the predicted free space in a few time steps and ensure that the robot can navigate without214

unnecessary conservatism. The results are summarized in Figure 4 and the metrics for success and215

failure are described in Appendix G. We observe that our proposed approaches, PWC and PWC-fine-216

tuned, have no collisions in any environments. While the robot reaches the goal in a slightly lower217

percentage of environments compared to baselines, we emphasize that ours is the only approach that218

is able to ensure a low, statistically guaranteed misdetection rate across test environments.219

Figure 6: A comparison between the
collision rates of different perception
systems that use the same safe planner.

To further illustrate the effect of misdetections on safety, we220

consider a different distribution of environments wherein we221

randomly place a single chair in the straight line path be-222

tween the initial position of the robot and the goal. For a223

safety threshold 1 − ϵ = 0.85, we compare PWC, CP-avg,224

and 3DETR. The results are provided in Figure 6 for 100 new225

test environments, wherein the goal is reached if the robot nav-226

igates to within 2 m of the goal. In these environments, the de-227

sired safety rate is not met by the baselines while our approach228

is still statistically guaranteed to be safe.229
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We provide additional simulation results that illustrate the effects of 1) closed-loop distribution230

shifts on safety in Appendix G.2 wherein PWC is robust to an increase in the level of closed-loop231

distribution shift while the baseline, CP-avg., is not which leads to higher collision rates for CP-avg.232

and 2) the tradeoff in different partition sizes for fine-tuning using split-CP in Appendix F.1.2.233

6 Hardware Validation: Vision-Based Quadruped Navigation234

We now validate the end-to-end statistical safety assurance of our approach on a quadrupedal hard-235

ware platform. As in our simulation setup in Section 5, the robot is tasked with navigating to a goal236

location while avoiding different chairs placed in varying configurations across a 8m x 8m room. We237

utilize the perception system calibrated in simulation with a guaranteed safety rate of 1− ϵ = 0.85,238

and compare our PWC method against CP-avg. (defined in Section 5) across 30 different physical239

environments (60 trials total). See Appendix H for more details about the hardware setup.240

(a) Environment 1 (b) Environment 4 (c) Environment 14

Figure 7: (Top) The physical layouts of the example hardware trails. (Bottom) A bird’s-eye view of the
estimated free spaces (shaded regions), and the trajectories performed by the robot (solid lines) with our method
(blue) and the baseline (orange). In all three trials, PWC is able to successfully navigate to the goal through
narrow paths (in Environment 1) and occluded areas/goal (in Environment 3). Baseline approach, CP-avg.,
misdetects free space in all environments leading to collisions in Environments 2 and 3.

Results. For PWC, we used the q̂0.85 = 0.73m threshold found in simulation to inflate the pre-241

dicted bounding boxes returned from 3DETR in order to achieve 85% confidence that our robot242

will remain safe in new environments. We summarize key statistics of PWC compared against CP-243

avg. (q̂0.85 = 0.02) across 30 different environments in Figure 4 (right). Importantly, our trials244

demonstrate that our confidence bound holds on hardware in real environments and without being245

too conservative. PWC was safe through 90% of the trials and also had comparable path length to246

the baseline. Meanwhile, the baseline struggled in the real environments by having misdetections in247

each trial and colliding with a chair in half of the trials. See Figure 7 for trajectories and free space248

estimations through several environments with narrow spaces, occluded chairs, and occluded goals.249

The supplementary video contains full example trials.250

PWC’s low misdetection rate and higher success rate in these trials emphasize the efficacy of the251

bounding box inflation provided by CP paired with the non-deterministic filter. This pairing, in a252
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principled way, inflates the (potentially poor) bounding box detections to properly capture obstacles253

but quickly shrinks the occupied space with the filter such that the robot can still navigate effectively.254

7 Related Work255

Safe planning. Collision avoidance is a crucial goal in autonomous navigation. Safe planning256

methods typically rely on the assumption that the robot has perfect knowledge of its state and envi-257

ronment [15]. Recent approaches have allowed for occlusion [16, 21, 22, 23] or accounted for losing258

sight of a previously tracked object [24], but still require either perfect detection of seen objects or259

bounded sensor noise. Such assumptions are impractical for learning-based perception modules that260

can fail catastrophically in new environments.261

Formal assurances for perception-based control. Proposed methods include control barrier func-262

tions (CBFs) [25, 26], verification methods on neural networks (NNs) [27, 28], and other learning-263

based methods [28, 29, 30, 20, 31, 32, 33, 34]. However, these works either do not guarantee gener-264

alization to novel environments [27, 28], or ignore closed-loop distribution shifts [31, 20], or require265

end-to-end training and a good prior [32, 33, 34], or demand usage/design of specific controllers266

[25, 26, 29]. Some also make strong assumptions on the perception system [35, 36] that are unreal-267

istic for deployment. In contrast, our method does not need any of the above, and is lightweight and268

modular, allowing for the use of any downstream safe planners to ensure end-to-end safety.269

Conformal prediction. Conformal prediction (CP) [5, 37, 38] is an uncertainty quantification270

framework particularly suitable for robotics applications [39, 40, 41, 42] where learned modules271

are deployed in environments drawn form unknown distributions. In this work, we focus on provid-272

ing uncertainty quantification for the perception system, which usually involves high-dimensional273

inputs and closed-loop distribution shifts. Prior works [41, 20, 43, 44] either provide guarantees for274

a single environment, assume known environments, or do not account for closed-loop distribution275

shifts. To the best of our knowledge, this is the first work to obtain end-to-end safety assurances for276

the perception and planning system in new environments while being robust to closed-loop distribu-277

tion shifts and amenable to changes in the planner parameters.278

8 Discussion and Conclusions279

We presented a modular framework for rigorously quantifying the uncertainty of a pre-trained per-280

ception model in order to provide an end-to-end statistical safety assurance for perception-based281

navigation tasks. Notably, our statistical assurance holds for generalization to new environmental282

factors (e.g, new obstacle geometries and configurations) and allows for the distribution shift of283

states that may occur during closed-loop deployment of the perception system with the planner. Our284

simulation and hardware experiments validated the theoretical safety assurances provided by PWC,285

while demonstrating significant empirical improvements in safety compared to baseline approaches286

that do not consider closed-loop distribution shift.287

Limitations and future work. One limitation of our work is the assumption of static obstacles. As288

a future direction, we are interested in quantifying uncertainty in both the state of agents moving289

in the environment and predictions of their semantic labels (e.g., “pedestrian” vs. “bicyclist”), and290

utilizing game-theoretic planning techniques that account for the uncertainty in the agents’ current291

state and future motion. Additionally, the inflation of bounding boxes we acquire from CP intro-292

duces some conservatism. We outline an extension to our approach in Appendix F to address this293

challenge by utilizing more general occupancy representations beyond bounding boxes, e.g., scene294

completion networks [45], which produce voxel-wise occupancy confidences. Constructing differ-295

ent non-conformity score functions that incorporate confidences from a pre-trained model could296

also potentially reduce conservatism. Lastly, we are interested in uncertainty quantification for per-297

ception models that support tasks beyond point-to-point navigation, e.g., calibrating the outputs of298

multi-modal foundation models for language-instructed navigation where we ensure accurate detec-299

tion. We expect that rigorous uncertainty quantification is a necessary step towards fully leveraging300

the power of large foundation models [1] while safely integrating them into future robotic systems.301
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